

Pharmacogenetic (PGx) Testing

*Advanced insights
for optimised drug
treatment outcomes*

Pharmacogenetic Testing

Pharmacogenetics (PGx), an important part of precision medicine, is the study of how genetic variability influences drug treatment outcomes. Recommended by Guidelines, many medications currently prescribed have pharmacogenetic data to support appropriate dosing or selection. Like all diagnostic tests, pharmacotherapeutic genotyping is one of multiple pieces of information that clinicians should consider when making their therapeutic choice for each patient.

Clinical Labs offers a comprehensive range of pharmacogenetic testing in order to provide Clinicians and Healthcare providers with important information to help decide on the most appropriate treatment for each individual, particularly in areas such as mental health, pain management, cardiology and oncology.

PGx test utility

Implementation of clinical pharmacogenetics, allele function and inferred phenotypes is a crucial step toward optimum patients' health. Identifying responders and non-responders to medications can reduce morbidity, avoid adverse events and optimise drug dosing.

Literature has shown that a large number of people are injured or die each year in hospitals from adverse drug events (ADEs), costing millions of dollars in healthcare costs each year. The field of genomic medicine presents one potential solution to reduce healthcare costs associated with ADEs and poor response to pharmacotherapy.

PGx guidelines

Evidence-based guidelines with pharmacotherapeutic recommendations for combinations of specific drugs and genotypes or predicted phenotypes are essential for implementing acquired pharmacogenetics knowledge in daily clinical practice.

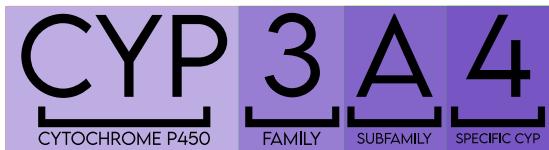
The Dutch Pharmacogenetics Working Group (DPWG) and the Clinical Pharmacogenetics Implementation Consortium (CPIC) have been developing guidelines for more than a decade (Swen *et al.* 2011a; Caudle *et al.* 2017).

Recommendations are preferably made available at the time of drug prescribing and dispensing for a patient with a genotype that requires an action, such as a dose reduction (Swen *et al.* 2011a; Deneer and van Schaik, 2013).

When to order the test

Physicians may order the pharmacogenetic testing per drug at the point of care, or an alternative approach to ordering is the use of pre-emptive testing, perhaps as part of an annual exam in young adults or even children that require multiple treatments. As a result of the increasing number of drugs with pharmacogenetic data, the pre-emptive use of testing could significantly optimise drug outcomes (Schildcrout *et al.* 2012).

Regardless of when ordered (at time of treatment or prior), due to the continuing decline in the costs of genomic testing technologies, a broad-based pharmacogenetic screen may yield the greatest cost savings.



Identifying responders and non-responders to medications can reduce morbidity, avoid adverse events and optimise drug dosing.

The cytochrome P450 (CYP450) and differences in drug metabolism

A family of enzymes (Figure 1), catalyses the metabolism of many drugs and xenobiotics. The genes that code for cytochrome P450 enzymes are highly polymorphic, which can significantly affect drug metabolism in certain individuals. Differences in drug metabolism due to CYP450 gene variants influence plasma levels of both the active drug and its metabolites.

For example, CYP2D6, CYP2C19 and CYP2C9 are responsible for the metabolism of a large number of commonly prescribed drugs, including warfarin, analgesics, clopidogrel, codeine, tamoxifen, some antidepressants, statins, proton pump inhibitors (PPIs) and anti-emetics (See Table 1). CYP3A5 genotype results can be used to guide dosing of tacrolimus in organ transplant patients (Birdwell *et al.* 2015).

DIFFERENT CYP ENZYMES

CYP2D6

CYP1A2

CYP2C19

CYP3A4

CYP2C9

CYP3A5

Figure 1. CYP Cytochrome P450 enzyme nomenclature and examples chart.

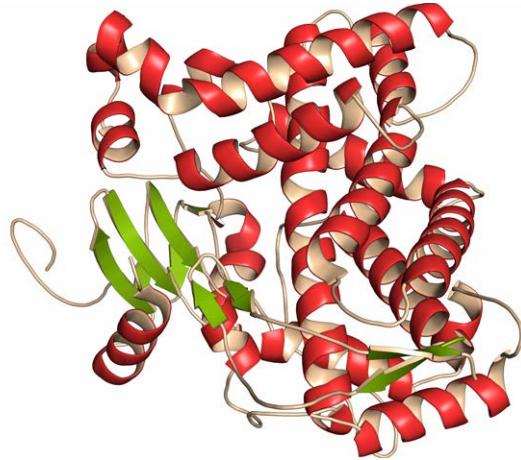
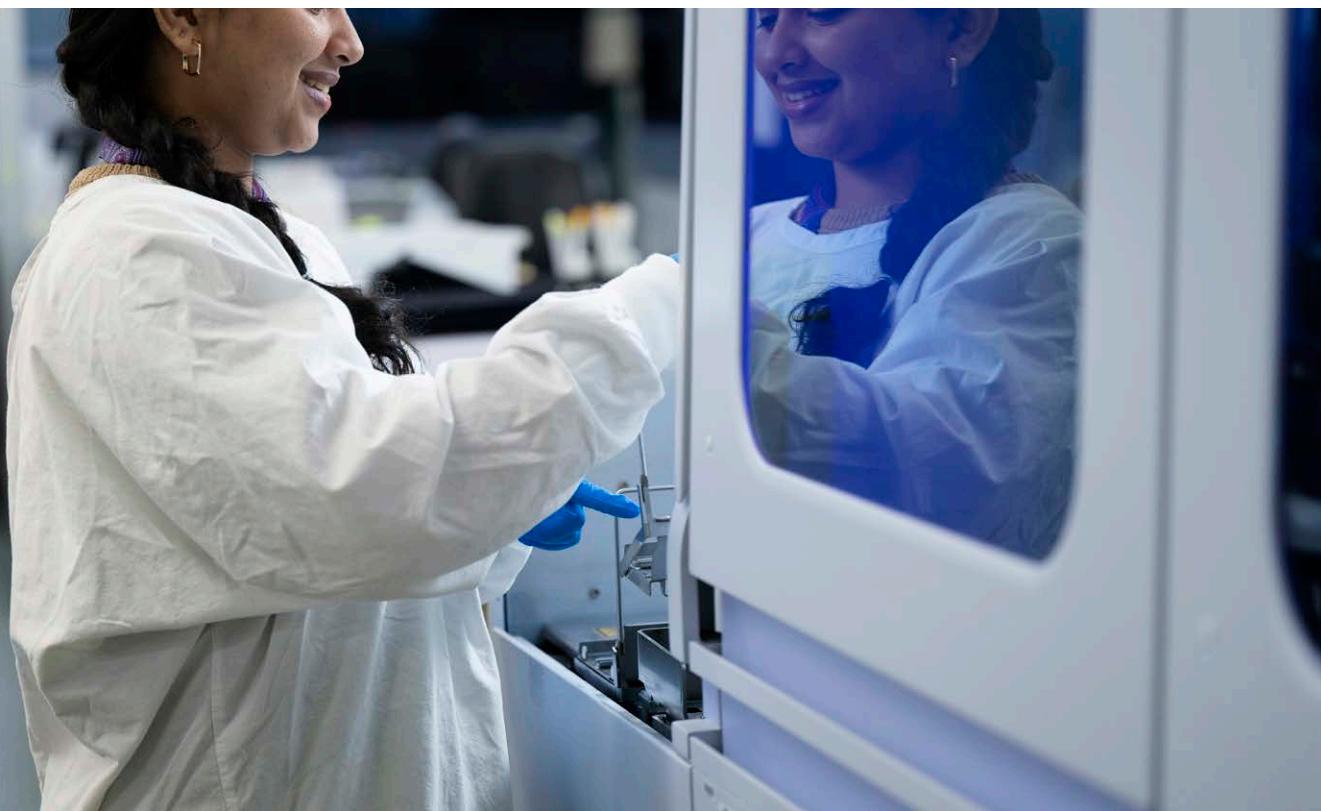



Figure 2. Cytochrome P450 (CYP2D6) liver enzyme in complex with a drug.

CYP2D6

CYP2D6 is the primary enzyme responsible for the metabolism of many commonly-used medications especially in mental health, oncology (tamoxifen and 5-HT3 receptor antagonists) (Goetz *et al.* 2018) and pain management (Crews *et al.* 2021) (Table 1 & Figure 2). CYP2D6 is highly polymorphic with over 130 identified allelic variants and sub-variants identified (www.PharmVar.org; CYP2D6 Allele Definition).

CYP2D6 alleles have been extensively studied in multiple geographically, racially, and ethnically diverse groups, and significant differences in allele frequencies have been observed. It is important to note that variation in CYP2D6 may have implications for many therapies that may not be listed on this report (Gaedigk *et al.* 2017).

CYP2C19

The hepatic *CYP2C19* enzyme contributes to the metabolism of a large number of clinically relevant drugs such as antidepressants, benzodiazepines, mephenytoin, some proton pump inhibitors (Lima *et al.* 2021), and clopidogrel (Scott *et al.* 2013) and anti-fungal medication (voriconazole) (Moriyama *et al.* 2017) (Table 1). Like many other *CYP450* superfamily members, the *CYP2C19* gene is highly polymorphic, with >25 known variant alleles.

CYP2C9

Variants in the *CYP2C9* genes modify the rate at which some medications are metabolised. When considering antidepressant therapy such as tricyclic anti-depressants (TCAs), *CYP2C9* test is often combined with analysis of the *CYP2C19* and *CYP2D6* genes (Attia *et al.* 2014 and Hicks *et al.* 2017). When considering warfarin therapy, this test is often combined with analysis of *VKORC1*.

VKORC1 and CYP2C9 and warfarin

Warfarin is one of the most commonly prescribed medications worldwide, used for many indications including prophylaxis and treatment of thromboembolic disorders, atrial fibrillation, or cardiac valve replacement, and systemic embolism after myocardial infarction (MI). Approved in the US in 1954, the high efficacy of warfarin is challenged by the high risk of ADEs due to its narrow therapeutic window, requiring careful monitoring and strict compliance.

While *CYP2C9* is predominantly involved in the metabolism of warfarin subtypes; *VKORC1* is the molecular target of the drug. In 2017, an international collaboration published an updated landmark paper defining appropriate warfarin doses based on a validated dosing algorithm of clinical biomarkers and *VKORC1/CYP2C9* genotypes (Johnson *et al.* 2017).

SLCO1B1 and statins

SLCO1B1 gene testing is clinically important in clearance of statins, especially simvastatin. Myopathy is reported in poor metabolisers of this gene. Alternative lipid lowering statins can be prescribed in lower doses such as atorvastatin, pravastatin and rosuvastatin (Ramsey *et al.* 2014).

Genetic variations can render some medications ineffective or toxic

Pharmacogenetic variants result in four distinct phenotypes: normal metabolisers (NMs), intermediate metabolisers (IMs), poor metabolisers (PMs), and ultrarapid metabolisers (UMs) which provides guidance to drug dosing and selection.

Overall, wild-type alleles are usually associated with functional enzyme-mediated metabolism.

Ultrarapid metabolisers may not achieve therapeutic plasma levels due to decreased trough drug concentrations, whereas *poor metabolisers* treated with drugs that are metabolised by these enzymes are at increased risk for prolonged therapeutic effect or toxicity due to increased trough levels of therapeutic drugs.

Some anti-psychotic and SSRI medications can be contraindicated in intermediate *CYP2D6* metabolisers due to increased risk of adverse effects and so alternative agents must be prescribed.

CYP2D6 ultrarapid metabolisers treated with codeine exhibit symptoms of extreme sleepiness, confusion or shallow breathing; the lowest possible dose should be prescribed to these patients.

Meanwhile, patients that are *CYP2D6 poor metabolisers* will not achieve sufficient pain control due to their inability to convert the drug to its active form of morphine (Crews *et al.* 2021).

CYP2C19 ultrarapid metabolisers should be prescribed alternative therapeutic agents other than benzodiazepines, such as citalopram (Celexa) and escitalopram (Lexapro) and TCAs such as imipramine (Tofranil) and clomipramine (Anafranil) due to possible decreases in the efficacy of these medications.

Pharmacogenetic markers in oncology

In addition to *RAS*, *BRAF*, *EGFR*, *ERBB2 (HER2)*, *PK3CA* and *KIT* mutation and *PD-1*, *ROS*, *ALK* and *BCR-ABL* fusion genes, other genetic pharmacogenetic biomarkers play a role in patients' responses to oncology therapy.

UDP-glucuronosyltransferase gene (*UGT1A1*)

UGT1A1 is involved in the metabolism of *irinotecan* (Figure 3), a topoisomerase I inhibitor. *UGT1A1* gene polymorphism is associated with toxicity and clinical efficacy of irinotecan-based chemotherapy in patients with advanced solid tumours including colorectal, rectal and lung cancer (Fujii *et al.* 2019).

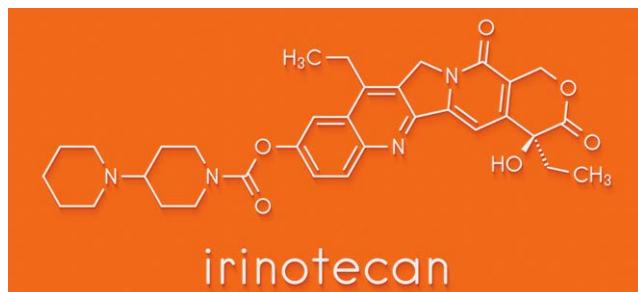


Figure 3. Irinotecan cancer chemotherapy drug molecule.

Thiopurine methyltransferase (*TPMT*)

TPMT is the primary enzyme responsible for thiopurine drugs (azathioprine, 6-mercaptopurine and 6-thioguanine) metabolism. These drugs are converted in the body to thioguanine nucleotides (TGNs).

Thiopurine therapy targets the replicating cells without overly harming normal cells. Several studies have established Single Nucleotide Polymorphisms (SNPs) in the *TPMT* gene that may lead to enzyme inactivity and therefore haematopoietic toxicity due to thiopurine drugs. It is recommended that physicians order *TPMT* genotyping before prescribing thiopurines to avoid bone marrow toxicity and consequent neutropenia (Relling *et al.* 2018).

Dihydropyrimidine dehydrogenase gene (*DPYD*)

DPD stands for dihydropyrimidine dehydrogenase, an enzyme made by the liver that breaks down uracil and thymine. The molecules created when pyrimidines are broken down (5,6-dihydrouracil and 5,6-dihydrothymine) are excreted by the body or used in other cellular processes. *DPYD* gene mutations result in excess quantities of the breakdown molecules in the blood, urine, and cerebrospinal fluid.

Mutations in the *DPYD* gene also interfere with the breakdown of drugs with structures similar to the pyrimidines, such as the cancer drugs 5-fluorouracil and capecitabine (two common chemotherapy drugs used as a treatment for a number of different cancers). As a result, these drugs accumulate in the body and cause the severe reactions and neurological manifestations as a result of DPD deficiency (Amstutz *et al.* 2017).

Conclusion

The incorporation of genetic information obtained from pharmacogenetic testing holds substantial promise to improve therapeutic decision making through improved efficacy and reduced adverse events. Considerations for clinical implementation, such as optimal laboratory workflows, electronic health record integration, and stakeholder engagement, as well as provider education, are crucial for patients' health.

PGx Testing at Clinical Labs

Comprehensive PGx Gene Panel:**

- CYP2D6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, CYP1A2, SLCO1B1 and VKORC1

Report: Our Comprehensive PGx Gene Panel report includes the genotype and the predicted phenotypes, such as the metaboliser status, along with potential drug-gene interaction and guidelines' recommendations. Please specify any medications of interest if you want them to be included in the report. The genes can be ordered separately or together. For individual genes, only genotyping/phenotyping will be reported.

Other Smaller PGx Genotyping Panels:**

- Statins Predictor: SLCO1B1
- Warfarin Panel: CYP2C9 and VKORC1
- Organ Transplant (Tacrolimus Immunosuppressant) PGx: CYP3A5
- PPIs PGx: CYP2C19
- Tamoxifen PGx: CYP2D6
- Clopidogrel PGx: CYP2C19
- Voriconazole Predictor: CYP2C19
- Anti-Psychotics Predictor: CYP2D6
- Anti-Depressants Predictor: CYP2D6 and CYP2C19

Single gene tests:**

- TPMT (Medicare rebate)
- DPYD (Medicare-rebatable from 1 November 2025)
- UGT1A1

To view the full list of drugs metabolised and genes tested, see Table 1 on page 7. For more information, including pricing, scan the QR code or visit clinicallabs.com.au/pharmacogenetictesting.

How to Order Pharmacogenetic (PGx) Testing at Clinical Labs

When to order: Before commencing therapy, or in cases of adverse reaction or resistance.

How to order: Fill out our routine Clinical Labs testing request form. List the gene(s) or group of genes required, and prescribed medications if available.

Collection locations: Patients can visit any of our 1,300+ convenient locations for their blood test. For locations, please visit clinicallabs.com.au/location.

Turnaround time: Results will be available 2-3 weeks after the sample receipt date.

Specimen required: 2x EDTA blood samples.

Report for smaller and single PGx gene panels:**

You will receive an individual report indicating the genotype and predicted phenotypes for the ordered small gene panels or single gene(s), including metaboliser status and guideline recommendations where applicable. ***Comprehensive reports are only provided with our Comprehensive PGx Gene Panel.**

Test cost: Apart from the TPMT gene, Clinical Labs' PGx gene panels are non-Medicare rebatable (an out-of-pocket fee applies). The DPYD gene will be Medicare-rebatable from 1 November 2025. For more information, including pricing, visit clinicallabs.com.au/pharmacogenetictesting.

Depending on the PGx panel(s) ordered, testing may be performed and reported in collaboration with an external provider.

References:

Amstutz et al. 2017. Clin Pharmacol Ther
Attia et al. 2014. Chem Pharm Bull
Birdwell et al. 2015. Clin Pharmacol Ther
Caudle et al. 2017. Clin Pharmacol Ther
CPIC 2023, Guideline for CYP2D6, CYP2C19 and SSRI Antidepressants
CPIC 2022, Guideline for SLCO1B1, CYP2C9 and Statins
CPIC 2022, Guideline for CYP2C19 and Clopidogrel Dosing
CPIC 2020 Guideline for CYP2C19 and Proton Pump Inhibitor Dosing
CPIC 2020 Guideline for CYP2C9 and NSAID Therapy
CPIC 2019 Guideline for CYP2D6 and Atomoxetine
Crews et al. 2021. Clin Pharmacol Ther
Deneer and van Schaik, 2013. Pharmacogenomics
Fujii et al. 2019. Cancer Chemotherapy and Pharmacology
Gaedigk et al. 2017. Clin Pharmacol Ther
Goetz et al. 2018. Clin Pharmacol Ther
Guidelines – CPIC (cpicpgx.org)
Hicks et al. 2017. Clin Pharmacol Ther
Johnson et al. 2017. Clin Pharmacol Ther
Klein et al. 2009. N Engl J Med
Lima et al. 2021. Clin Pharmacol Ther
Moriyama et al. 2017. Clin Pharmacol Ther
Ramsey et al. 2014. Clin Pharmacol Ther
Relling et al. 2018. Clin Pharmacol Ther
Schildcrout et al. 2012. Clin Pharmacol Ther
Scott et al. 2013. Clin Pharmacol Ther
Swen et al. 2011a. Clin Pharmacol Ther

Table 1. Examples of drugs metabolised and genes tested

Medication	Gene(s)	Medication	Gene(s)	Medication	Gene(s)
Cardiology		Mental Health		Oncology	
Carvedilol	CYP2D6	Anti-Depressants (TCAs)		Atazanavir	UGT1A1*
Clopidogrel	CYP2C19	Amitriptyline	CYP2D6, CYP2C19	Azathioprine	TPMT*
Flecainide	CYP2D6	Clomipramine	CYP2D6, CYP2C19	Belinostat	UGT1A1*
Metoprolol	CYP2D6	Desipramine	CYP2D6, CYP2C19	Binimetinib	UGT1A1*
Warfarin	VKORC1, CYP2C9	Doxepin	CYP2D6, CYP2C19	Capecitabine	DPYD*
Lipid Lowering Medication		Imipramine	CYP2D6, CYP2C19	Cisplatin	TPMT*
Atorvastatin	SLCO1B1, CYP3A4	Nortriptyline	CYP2D6	Gefitinib	CYP2D6
Fluvastatin	SLCO1B1, CYP2C9	Trimipramine	CYP2D6, CYP2C19	Irinotecan	UGT1A1*
Lovastatin	SLCO1B1	Anti-Depressants (Other)		Mercaptopurine	TPMT*
Pitavastatin	SLCO1B1	Vortioxetine	CYP2D6	Nilotinib	UGT1A1
Pravastatin	SLCO1B1	Anti-Psychotics		Pazopanib	UGT1A1*
Rosuvastatin	SLCO1B1	Aripiprazole	CYP2D6	Tamoxifen	CYP2D6
Simvastatin	SLCO1B1	Brexpiprazole	CYP2D6	Tegafur	DPYD*
Gastroenterology		Haloperidol	CYP2D6	Thioguanine	TPMT*
Anti-Emetic		Quetiapine	CYP3A4	5-Fluorouracil	DPYD*
Metoclopramide	CYP2D6	Risperidone	CYP2D6	Organ Transplant	
Ondansetron	CYP2D6	Zuclopentixol	CYP2D6	Tacrolimus	CYP3A5
Tropisetron	CYP2D6	Benzodiazepines (Anxiolytics)		Pain Management	
Proton Pump Inhibitors		Clobazam	CYP2C19	NSAIDs	
Esomeprazole	CYP2C19	Diazepam (Valium)	CYP2C19	Celecoxib	CYP2C9
Lansoprazole	CYP2C19	Neurology		Flurbiprofen	CYP2C9
Omeprazole (Losec)	CYP2C19	Anti-Dementia		Ibuprofen	CYP2C9
Pantoprazole	CYP2C19	Donepezil	CYP2D6	Piroxicam	CYP2C9
Rabeprazole	CYP2C19	Galantamine	CYP2D6	Meloxicam	CYP2C9
Mental Health		Anti-Epileptics		Opioids	
Anti-ADHD		Phenytoin/ Fosphenytoin	CYP2C9	Codeine (prodrug)	CYP2D6
Atomoxetine	CYP2D6	Multiple Sclerosis		Dihydrocodeine	CYP2D6
Anti-Depressants (MOAs)		Siponimod	CYP2C9	Tramadol	CYP2D6
Moclobemide	CYP2C19			Urology	
Anti-Depressants (SNRIs)				Darifenacin	CYP2D6
Venlafaxine	CYP2D6			Mirabegron	CYP2D6
Anti-Depressants (SSRIs)				Tamsulosin	CYP2D6
Citalopram	CYP2C19			Tolterodine	CYP2D6
Escitalopram	CYP2C19			Anti-Fungal	
Fluvoxamine	CYP2D6			Voriconazol	CYP2C19
Paroxetine	CYP2D6				
Sertraline (Zoloft)	CYP2C19				

Please note that this is a guide for gene selection. The test is not intended to cover possible allergies to certain drugs. Due to a lack of evidence, some specific medications may not be reported even if they are part of the same drug class that is metabolised by the relevant gene.

*The following genes are not included in our Comprehensive PGx Gene Panel and need to be ordered individually: UGT1A1, TPMT and DPYD.

ABOUT THE AUTHOR

Assoc. Prof. Mirette Saad

MBBS (HONS) MD (HONS) MAACB FRCPA PHD

*National Director of Molecular Genetics
Australian Clinical Labs*

Lab: Clayton (Vic)

Speciality: Chemical Pathology

Areas Of Interest: Molecular genetics, precision medicine, cancer genetics, antenatal screening, NIPT, endocrine, fertility testing and research, medical teaching

Phone: (03) 9538 6777

Email: mirette.saad@clinicallabs.com.au

Associate Professor Mirette Saad is a Consultant Chemical Pathologist and the National Director of Molecular Genetics at Australian Clinical Labs. At Clinical Labs, A/ Prof Mirette Saad leads the Molecular Genetic testing for non-invasive prenatal testing (NIPT), antenatal screening, personalised drug therapy and cancer. She is a Chair of the RCPA Chemical Pathology Advisory Committee, Member of the RCPA Genetic Advisory Committee, AACB and a Chair of the Precision Medicine Services at Australian Clinical Labs.